
4-bit Window Pedersen Hash On The Baby Jubjub Elliptic Curve

Jordi Baylina1 and Marta Bellés1,2

1iden3, 2Universitat Pompeu Fabra

Contents

1 Scope 2

2 Motivation 2

3 Background 2

4 Terminology 2
4.1 Elliptic Curve: Baby-Jubjub . 2
4.2 Pedersen Hash . 3

5 Description 4
5.1 Set Of Generators . 4
5.2 Computation Of The Pedersen Hash . 4
5.3 Examples And Test Vectors . 5

6 Challenges 5

7 Security 5
7.1 Overflow Prevention . 5

8 Implementation 6
8.1 A Note On Efficency: Number Of Constraints Per Bit 6
8.2 Existing Implementations . 7

9 Intellectual Property 7

References 7

1

1 Scope

The 4-bit window Pedersen hash function is a secure hash function which maps a sequence of
bits to a compressed point on an elliptic curve [4].

This proposal aims to standardize this hash function for use primarily within the arithmetic
circuits of zero knowledge proofs, together with other generic uses such as for Merkle tree or
any use cases requiring a secure hash function.

As part of the standard, the paper details the elliptic curve used for the hash function, the
process to compute the Pedersen hash from a given sequence of bits, and the computation of
the hash from a sequences of bits using an arithmetic circuit—which can be used within zero
knowledge proofs.

Moreover the paper includes references to open-source implementations of the Pedersen hash
function which follows the computation process details in this proposal.

2 Motivation

The primary advantage of this Pedersen hash function is its efficiency. The ability to compute
the hash efficiently makes it an attractive proposal for use within the circuits associated with
zk-SNARK proofs [1].

Having a standard, secure, and efficient hash function is one of the paramount aspect for imple-
menting usable, comprehensible, and easily verifiable zero knowledge proofs.

3 Background

The Pedersen hash has already been defined and used by the ZCash team in Sapling, their latest
network upgrade [3]. They construct it on the Jubjub elliptic curve and using 3-bit lookup tables.
In this document, we propose a different implementation of the Pedersen hash function using
Baby-Jubjub elliptic curve and 4-bit windows, which requires less constraints per bit than using
3-bit windows.

4 Terminology

4.1 Elliptic Curve: Baby-Jubjub

Consider the prime number

p = 21888242871839275222246405745257275088548364400416034343698204186575808495617

and let Fp be the finite field with p elements.

2

We define EM as the Baby-Jubjub Montgomery elliptic curve defined over Fp given by equa-
tion

E : v2 = u3 + 168698u2 + u.

The order of EM is n = 8× r, where

r = 2736030358979909402780800718157159386076813972158567259200215660948447373041

is a prime number. Denote by G the subgroup of points of order r, that is,

G = { P ∈ E(Fp) | rP = O } .

EM is birationally equivalent to the Edwards elliptic curve

E : x2 + y2 = 1 + dx2y2

where d = 9706598848417545097372247223557719406784115219466060233080913168975159366771.

The birational equivalence [2, Thm. 3.2] from E to EM is the map

(x, y)→ (u, v) =

(
1 + y

1− y
,

1 + y

(1− y)x

)
with inverse from EM to E

(u, v)→ (x, y) =

(
u

v
,
u− 1

u + 1

)
.

4.2 Pedersen Hash

Let M be a sequence of bits. The Pedersen hash function of M is defined as follows:

• Let P0, P1, . . . , Pk be uniformly sampled generators of G (for some specified integer k).

• Split M into sequences of at most 200 bits and each of those into chunks of 4 bits1. More
precisely, write

M = M0M1 . . .Ml where Mi = m0m1 . . .mki with

{
ki = 49 for i = 0, . . . , l − 1,

ki ≤ 49 for i = l,

where the mj terms are chunks of 4 bits [b0 b1 b2 b3]. Define

enc(mj) = (2b3 − 1) · (1 + b0 + 2b1 + 4b2)

and let

〈Mi〉 =

ki−1∑
j=0

enc(mj) · 25j .

1If M is not a multiple of 4, pad M to a multiple of 4 bits by appending zero bits.

3

We define the Pedersen hash of M as

H(M) = 〈M0〉 · P0 + 〈M1〉 · P1 + 〈M2〉 · P2 + · · ·+ 〈Ml〉 · Pl. (1)

Note that the expression above is a linear combination of elements of G, so itself is also an
element of G. That is, the resulting Pedersen hash H(M) is a point of the elliptic curve
E of order r.

5 Description

5.1 Set Of Generators

We generate the points P0, . . . , Pk in such a manner that it is difficult to find a connection
between any of these two points. More precisely, we take D = "string seed" followed by a
byte S holding that smallest number that H = Keccak256(D || S) results in a point in the
elliptic curve E.

5.2 Computation Of The Pedersen Hash

In the following circuit pedersen hash, we have depicted the circuit used to compute the
Pedersen hash of a message M described in equation 1. Each multiplication box returns a
term of the sum.

As the set of generators are fixed, we can precompute its multiples and use 4-bit lookup windows
to select the right points. This is done as shown in the circuit called selector. This circuit
receives 4-bit chunk input and returns a point. The first three bits are used to select the right
multiple of the point and last bit decides the sign of the point. The sign determines if the
x-coordinate should be taken positive or negative, as with Edwards curves, negating a point
corresponds to the negation of its first coordinate.

4

5.3 Examples And Test Vectors

Work In Progress

6 Challenges

One of the main challenges to create this standard and to see it adopted by the community
is to provide correct, usable, and well-maintained implementations in as many languages as
possible.

Some effort is also required to audit and verify code coming from the community and claiming
to implement the 4-bit window Pedersen hash function to prevent the propagation of potentially
insecure implementations.

Finally, the proposal as it stands today includes the padding of the message M to a multiple of
four bits. There are potentials issues with this approach where collisions can happen.

7 Security

7.1 Overflow Prevention

As we described in section 5.2, we use a windowed scalar multiplication algorithm with signed
digits. Each 4-bit message chunk corresponds to a window called selector and each chunk
is encoded as an integer from the set {−8..8}\{0}. This allows a more efficient lookup of the
window entry for each chunk than if the set {1..16} had been used, because a point can be
conditionally negated using only a single constraint [3].

5

As there are up to 50 segments per each generator Pi, the largest multiple of the generator Pi

is n · Pi with
n = 20 × 8 + 25 × 8 +

(
25
)2 × 8 · · ·+ 2245 × 8.

To avoid overflow, this number should be smaller than (r − 1)/2. Indeed,

n = 8×
49∑
k=0

25k = 8× 2250 − 1

25 − 1

= 466903585634339497675689455680193176827701551071131306610716064548036813064

and
r − 1

2
= 1368015179489954701390400359078579693038406986079283629600107830474223686520

> n.

8 Implementation

8.1 A Note On Efficency: Number Of Constraints Per Bit

When using 3-bit and 4-bit windows, we have 1 constraint for the sign and 3 for the sum
(as we are using the Montgomery form of the curve, that requires only 3). Now let’s look at the
constraints required for the multiplexers.

With 3-bit windows we need only one constraint per multiplexer, so 2 constraints in total.

Standard 4-bit windows require two constraints: one for the output and another to compute
s0 ∗ s1. So, a priori we would need 4 constraints, two per multiplexer. But we can reduce it to 3
as the computation of s0 ∗ s1 is the same in both multiplexers, so this constraint can be reused.
This way only 3 constraints are required.

So, the amount of constraints per bit are:

• 3-lookup window : (1 + 3 + 2)/3 = 2 constraints per bit.

• 4-lookup window : (1 + 3 + 3)/4 = 1.75 constraints per bit.

The specific constraints can be determined as follows: let the multiplexers of coordinates x and
y be represented by the following look up tables:

6

s2 s1 s0 out

0 0 0 a0
0 0 1 a1
0 1 0 a2
0 1 1 a3
1 0 0 a4
1 0 1 a5
1 1 0 a6
1 1 1 a7

s2 s1 s0 out

0 0 0 b0
0 0 1 b1
0 1 0 b2
0 1 1 b3
1 0 0 b4
1 0 1 b5
1 1 0 b6
1 1 1 b7

We can express them with the following 3 constraints:

• aux = s0s1

• out = [(a7 − a6 − a5 + a4 − a3 + a2 + a1 − a0) ∗ aux + (a6 − a4 − a2 + a0) ∗ s1
+ (a5 − a4 − a1 + a0) ∗ s0 + (a4 − a0)]z + (a3 − a2 − a1 + a0) ∗ aux + (a2 − a0) ∗ s1
+ (a1 − a0) ∗ s0 + a0

• out = [(b7 − b6 − b5 + b4 − b3 + b2 + b1 − b0) ∗ aux + (b6 − b4 − b2 + b0) ∗ s1
+ (b5 − b4 − b1 + b0) ∗ s0 + (b4 − b0)]z + (b3 − b2 − b1 + b0) ∗ aux + (b2 − b0) ∗ s1
+ (b1 − b0) ∗ s0 + b0

8.2 Existing Implementations

Implementation of the specifications and arithmetic of the Baby-Jubjub curve:

• Barry WhiteHat (SAGE): https://github.com/barryWhiteHat/baby_jubjub.

• Jordi Baylina (circom language): https://github.com/iden3/circomlib/blob/master/
circuits/babyjub.circom.

Implementation of the Pedersen Hash function:

• Jordi Baylina (circom language): https://github.com/iden3/circomlib/blob/master/
circuits/.

9 Intellectual Property

The source code of the implementations listed in this proposal are publicly available. Circom is
licensed under GPL3.

References

[1] Zcash open discussion: choose improved hash function for merkle tree (or replace merkle
tree), Accessed February 25, 2018. https://github.com/zcash/zcash/issues/2258.

7

https://github.com/barryWhiteHat/baby_jubjub
https://github.com/iden3/circomlib/blob/master/circuits/babyjub.circom
https://github.com/iden3/circomlib/blob/master/circuits/babyjub.circom
https://github.com/iden3/circomlib/blob/master/circuits/
https://github.com/iden3/circomlib/blob/master/circuits/
https://github.com/zcash/zcash/issues/2258

[2] Bernstein, D. J., Birkner, P., Joye, M., Lange, T., and Peters, C. Twisted
edwards curves. Cryptology ePrint Archive, Report 2008/013, March 13, 2008. https:

//eprint.iacr.org/2008/013.

[3] Hopwood, D., Bowe, S., Hornby, T., and Wilcox, N. Zcash protocol specification ver-
sion 2018.0-beta-31. https://github.com/zcash/zips/blob/master/protocol/sapling.
pdf, November 14, 2018.

[4] Libert, B., Mouhartem, F., and Stehlé, D. Tutorial 8, 1016-17. Notes from the
Master Course Cryptology and Security at the École normale supérieure de Lyon, https:
//fmouhart.epheme.re/Crypto-1617/TD08.pdf.

8

https://eprint.iacr.org/2008/013
https://eprint.iacr.org/2008/013
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://github.com/zcash/zips/blob/master/protocol/sapling.pdf
https://fmouhart.epheme.re/Crypto-1617/TD08.pdf
https://fmouhart.epheme.re/Crypto-1617/TD08.pdf

	Scope
	Motivation
	Background
	Terminology
	Elliptic Curve: Baby-Jubjub
	Pedersen Hash

	Description
	Set Of Generators
	Computation Of The Pedersen Hash
	Examples And Test Vectors

	Challenges
	Security
	Overflow Prevention

	Implementation
	A Note On Efficency: Number Of Constraints Per Bit
	Existing Implementations

	Intellectual Property
	References

